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Abstract

An earlier nonlinear model for two-layer parallel folding with bedding plane slip is extended to embrace serial buckling behaviour.

Approximating the folds using two cubic B-splines, a quasi-energy formulation admits both synchronous and serial-type buckling under

conditions of both controlled load and controlled end-shortening. In the early stages of evolution, non-periodic saddle points, corresponding to

localized folds, are found to provide the preferred solution. However, as the end-shortening increases, the saddle points converge with unstable

maxima representing synchronous folding, until only periodic solutions exist. This shift from localized to two-hump periodic behaviour is seen as

a primitive exposition of the more general theme of serial or sequential fold formation.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper presents a rigorous analysis of serial folding, a

process long recognised by geologists as occurring in rocks, but

which has not yet been put on a sound mechanical basis. Field

observations (Price, 1970, 1975) and analogue experiments

(Cobbold, 1975; Blay et al., 1977) have established that serial

folding is a common phenomenon in the folding of rocks and it

is therefore appropriate to seek a mathematical explanation for

this type of behaviour. Fig. 1 shows four stages in an

experiment on layers of A4 size paper held together

transversely under an applied overburden pressure and

compressed in the longitudinal direction by slow application

of end displacement to initiate a sequence of parallel folds

spreading from the loaded edge. More details can be found in

Edmunds et al. (2006). The behaviour shown in Fig. 1 is known

variously as sequential amplification (Price and Cosgrove,

1990), serial folding (Blay et al., 1977) or cellular buckling

(Hunt et al., 2000). Although the humps form sequentially, it is

important to note that the load transfers through the length of

the sample without reduction and is not being applied

sequentially. The behaviour then differs fundamentally from

its spontaneously occurring counterpart (Hunt, 2006), with the
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resulting wavelengths expected to be different for instance

(Budd et al., 2001).

In this paper an analysis is presented for the buckling of a

confined multilayer subjected to either a constant external

stress or a constant external strain. It complements the work of

Biot (1961), Ramberg (1961) and Johnson (1977) in that,

unlike these earlier studies, it addresses the problems of the

sequential formation of folds rather than spontaneous amplifi-

cation. Biot (1961) analysed the buckling behaviour of a linear

elastic layer set in a viscous matrix. He developed the idea of a

dominant wavelength, which amplifies more rapidly than any

other, and predicted the formation of a uniform wave-train of

sinusoidal buckles. He also studied multilayered elastic models

(Biot, 1963, 1964) and reached similar conclusions, namely

that a dominant fold wavelength develops and that folding

occurs uniformly throughout the model. Ramberg (1961, 1964)

analysed the buckling behaviour of both single and multi-

layered elastic and viscous systems and reached the same

conclusions, i.e. that the buckling occurred uniformly

throughout the material. These results are in marked contrast

to those of the analysis described in this paper, and the buckling

behaviour that occurred in the experimental analogue models.

The paper extends a previous study of non-linear folding of

a two layer system with bedding plane slip (Budd et al., 2003),

and employs the concept of approximating the folding patterns

by using cubic B-splines, which allows for two successive

humps of different amplitude to be represented and thence can

portray primitive forms of both localized and periodic
Journal of Structural Geology 28 (2006) 444–455
www.elsevier.com/locate/jsg

http://www.elsevier.com/locate/jsg


Fig. 1. Parallel folding in layers of paper, showing the serial buckling behaviour.

Fig. 2. Slip between incompressible layers constrained to remain in contact.
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buckling. We present a rigorous analysis of the process of serial

folding in this model, tracking its development and success-

fully mirroring the sequence seen in Fig. 1, from buckling into

a single hump through to the development of the two-hump

‘periodic’ form as the external loading is changed. Previous

work on multilayer buckling by Latham (1985a,b) has

confirmed that the localization of folds requires non-linear

behaviour, which is built into the model both through the

expression for interlayer slip and through a restiffening

foundation. The process of bedding plane slip is modelled by

allocating frictional properties to the bedding planes owing to

the layers being under high overburden pressures (Hobbs et al.,

1976). This process is commonly indicated by slickensides, or

crystal fibres, on folded bedding planes, and by displaced

markers. Remarkably the theory predicts that this slip will

occur episodically. Such stick-slip displacement is a process

that has been recognized in nature and extensively discussed in

the geological literature both with respect to movement along

faults and along bedding planes during fold amplification

(Hobbs et al., 1976; Price and Cosgrove, 1990). However, this

process has not yet been successfully incorporated into any

analysis of buckling and we make a systematic derivation in

this paper.

Two solutions to the buckling problem are discussed, one

relevant to serial folding and the other to spontaneous folding

and we show that the type of folding that occurs is controlled by

the boundary conditions. Interestingly, the theory confirms that

these two folded patterns have different wavelengths.

The problem of the rheology of rocks during folding is also

addressed in the paper and the authors agree with previous
workers who have argued that elastic buckling solutions are

geologically important for predicting fold initiation even when

fold amplification is achieved by non-elastic (e.g. viscous or

plastic) behaviour. Parallel folds, in particular, are usually

found in the upper levels of the Earth’s crust, typically in the

upper part of an orogenic belt, and this observation supports the

use of elasticity theory to study the deformation (de Sitter,

1964).
2. Two layer model

The model is essentially that of two extended elastic beams,

held in contact by overburden pressure, but which can slip over

each other. If we consider incompressible layers of thickness t,

with bending stiffness EI, embedded in a soft foundation of

stiffness k per unit length and compressed by a load P (see

Fig. 2), and follow classical Euler beam theory, the total
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Fig. 3. Slip directions for (a) cZC1, (b) cZK1. Note that arrows used to represent frictional forces would be in the reverse directions to those shown.

Fig. 4. Bifurcation diagram indicating jammed region for constant m.
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potential energy, over the half-wavelength L, for small vertical

deflections w, can be written as (Budd et al., 2003):

V Z

ðL
0

EI €w2KP
_w2

2
Ck

w2

2
Ccmqt _wj j

� �
dx (1)

where dots denote differentiation with respect to the axial

coordinate x. Here the first term is the bending energy in the

two layers, the second is the work done by the total load P,

the third is the work done in the foundation and the fourth is

the work done against friction. The two layers are held

together by overburden pressure q, and the coefficient of

friction is m.

The term cZG1 is a friction indicator, the purpose of

which is to distinguish between the two possibilities of Fig. 3

with the friction acting either to resist growth (cZC1) or

decay (cZK1) in the amplitude of the buckle. As both

situations can appear in the equilibrium paths of the system, the

value of c is adjusted accordingly such that the work done

against friction is always positive. The equilibrium solutions of

the system on the verge of slipping are then stationary points of

the energy functional (1) (for more details see Budd et al.

(2003)). Serial buckling arises when an unstable localized

response is followed by restabilization and eventual lockup and

hence in addition to the terms in Eq. (1) a nonlinearity is

included via the extra term:

1

4
C

ðL
0

w4dx (2)

where C adds a stiffening nonlinear component to the linear

foundation stiffness k.

From the experiment in Fig. 1, we see that towards the

centre of the multilayer the folds look approximately

sinusoidal. Budd et al. (2003) use this as an assumption as to

the waveshape and introduce a Rayleigh/Galerkin approxi-

mation based on the function

wðxÞZQcos
px

L

� �
where Q represents the amplitude of the periodic mode-

shape. The coefficient of friction m and the friction indicator

c can then be seen in the role of an imperfection,
‘unfolding’ the classical bifurcation point, associated with

the Euler load, at QZ0 and PZPC (see Fig. 4). At constant

load P, points between the curves defined by cZK1 (or

C1) are stationary positions where the system is ‘trapped’

or ‘jammed’ between the two critical slip conditions, i.e. the

friction is holding the layers such that they cannot slip.

Points within the jammed region imply that the system is in

equilibrium and can be represented by a value of c

somewhere in the range K1!c!1. Under dead loading

(parametric variation in load), falling paths in the upper two

quadrants on the edge of the jammed region would be

unstable, such that the system would immediately start to

deflect from such a point with jQj increasing (Thompson

and Hunt, 1973). The same equilibrium positions are likely

to be stable under conditions of rigid loading (parametric

variation in end-shortening), however, and would in any

case restabilize when the path starts to curve back up as jQj

increases. We note that with a linear foundation (CZ0) this

restabilization never takes place, the paths simply approach-

ing asymptotically a flat (horizontal) path that crosses the

P-axis at the critical bifurcation load PZPC (Budd et al.,

2003) and the amplitude grows ad infinitum.
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Fig. 5. The cubic B-spline.
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Fig. 6. Bifurcation diagram for one-spline model, linear foundation.
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3. Modelling waveshapes using cubic B-splines

3.1. The cubic B-spline

To avoid discontinuities in slopes and bending moments,

the shape function w should have continuous first and

second derivatives. The cubic B-spline, B3 (see Fig. 5) has

this necessary property, but allows discontinuities in the

third derivative to give the step changes in shear force seen

in Budd et al. (2003). A single cubic spline B3(x) has the

deflected shape

B3ðxÞZ

0 x%K2

4
3
C2xCx2 C x3

6
K2%x%K1

2
3
Kx2Kx3

2
K1%x%0

2
3
Kx2 C x3

2
0%x%1

4
3
K2xCx2Kx3

6
1%x%2

0 xR2

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(3)

Unlike the sinusoidal waveshape approximation, the

deflection of the cubic B-spline, together with its first and

second derivatives, is zero at both ends. Thus we are able to

model a long system that is predominantly unbuckled, but

which has a single fold that matches smoothly to the flat

(undeflected) state as in a classical homoclinic or localized

solution (Champneys et al., 1999).

3.2. Single B-spline formulation

Following the Galerkin approximation of Budd et al. (2003),

the deflection, w, can be modelled with a single cubic B-spline.

To remain consistent with the earlier work, B3 is rescaled to the
range 0%x%L, and an amplitude variable, Q, is introduced on

the waveshape:
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(4)

If w is substituted into the nonlinear total potential energy

function, V, of Eqs. (1) and (2) it becomes explicitly:

VðQ;LÞZ
512EI

3L3
Q2K

4P

3L
Q2 C

151kL

2520
Q2

C
4cmqt

3
Qj jC

40853

4324320
CQ4L

(5)
3.2.1. The linearised solution (CZ0)

When CZ0 the nonlinearity in the foundation is absent and

we can directly follow the Galerkin analysis of Budd et al.

(2003). The optimum buckle length is obtained by minimizing

V with respect to L, giving

Lopt Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1225P2 C84560kEI

p
K1680P

151k

s
(6)

Note that Lopt does not depend upon the amplitude Q in this

case. Equilibrium states (which necessarily correspond to

functions with w, _w and €w all zero at the ends) are found by

seeking stationary values of V with respect to Q (vV/vQZ0) to

give:

QZG
1680cmqtL3

3360PL2K430080EIK151kL4
(7)

Combining these two results gives the equilibrium states of

Fig. 6, which, qualitatively, are very close in form to those in
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Budd et al. (2003), but relate inherently to a single hump rather

than the periodic response.

The critical load PC and related length LC can be found by

substituting Lopt into the second derivative of V with respect to

Q and setting the result to zero (v2V/vQ2Z0) (Thompson and

Hunt, 1973) to give

PC Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2416

105
kEI

r
; LC Z 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105

151

EI

k

4

r
(8)
3.2.2. The nonlinear solution (Cs0)

The same sequence of arguments can be applied to the case of

Cs0, although the presence of the nonlinearity makes solution

more difficult. First minimizing V with respect to L gives
Lopt Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
192

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15015ð15015P2 C1036464EIkC163412EICQ2Þ

p
K2882880P

259116kC40853CQ2

s
(9)
We note that L is now not only a function of the load P, but

also of the amplitude Q. This is fundamentally different from

the notion conceived by Biot that the wavelengths change

during fold evolution, as Eq. (9) relates inherently to a single

hump and not to a wavetrain as suggested by the ‘dominant’

wavelength analysis (Biot, 1961).

The equilibrium equation vV/vQZ0 becomes

vV

vQ
Z

1024EI

3L3
QK

8P

3L
QC

151kL

1260
QG

4

3
cmqt

C
40853CL

1081080
Q3 Z 0

(10)

For POPC and each L, there are three possible solutions of

Eq. (10) for Q. The solutions of Eqs. (9) and (10) can be found

by iteration of L and Q. The linear approximation for Lopt given

by Eq. (6) is first substituted into Eq. (10) and then each of the

three possible solutions for Q thus obtained is substituted in
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Fig. 7. Wave profiles for one-spline model, nonlinear foundation.
turn into Eq. (9) to update the approximations for Lopt. The

process is continued until convergence is achieved.

Fig. 7 shows how a single fold evolves far into the post-

buckling range, highlighting the variation of buckle length L

and amplitude Q with load P as the solution destabilizes and

restabilizes again. Also, the upper right quadrant of the

bifurcation diagram for several values of C is seen in Fig. 8,

detailing how the restabilization is affected by the degree of

nonlinearity.
4. Two B-spline formulation

In experiments used to mimic parallel folding, humps are

commonly observed to form sequentially, i.e. by serial
folding. To explore this multiple hump scenario in the

simplest manner, we next consider a two-spline formulation

allowing for two independent maxima/minima. Using this

two-spline formulation, we find that the model has

more freedom to select the waveshape, rather than the

Galerkin approximation, which imposes the profile. To this

end, we take values of CO0 for loads above PC, such that

restabilization of the foundation and the consequent lock-up

in amplitude can successfully model the response of the

experiments of Fig. 1.

The wave pattern is represented by two rescaled cubic

B-splines w1 and w2 with amplitudes Q1 and Q2 and lengths L1
and L2, respectively. The full deflection w along the wave is

then found by superposition of w1 and w2. Both primitive

periodic (Q2ZKQ1) and localized (Q2sKQ1) solutions are

found to co-exist (see Fig. 9). Note that due to the interference

of w1 and w2, in most cases the maximum and minimum

amplitudes of w will differ from Q1 and Q2.
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Fig. 9. Schematic representation of primitive modeshapes from the two B-spline model: (a) homoclinic (Q1sKQ2); (b) periodic (Q1ZKQ2).
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4.1. Overlap

If the wave is modelled in this way, then it is necessary to

consider how much w1 and w2 should interfere. To this end we

introduce an overlap variable, 0%U%1, such that UL

represents the position along the first spline where the second

spline starts: UZ0 thus implies complete overlap and UZ1

implies no interference at all. For the intervals 0%U%1/4,

1/4%U%1/2, 1/2%U%3/4 and 3/4%U%1 different sections

of w1 are superposed with w2 and the total length (UL1CL2)

must be split up accordingly. Later we will minimize the

maximum total potential energy with respect to U. It is worth

commenting that U helps to dictate the overall length of the

buckled region and hence removes some of the importance of

the influence of L1 and L2.
4.2. Galerkin model

The two-spline model has a total of five degrees of freedom,

amplitudes Qi (iZ1, 2), their corresponding lengths Li, and

overlap U. Ideally, energy minimization should be carried out

with respect to each of these variables independently.

However, the resulting process was considered unnecessarily

cumbersome and for the present descriptive purposes it was

found more instructive to reduce the description to the two

underlying variables Q1 and Q2, such that the contour plots of

the following section could be drawn. This was done first by

taking the spline lengths directly from the nonlinear single

spline result (9), and secondly minimizing only once at

each load value with respect to U, under the periodic

assumption Q1ZKQ2. Whilst noting that the localized

solutions Q1sKQ2 could possibly lead to slightly different

overlap values if complete freedom were allowed, the two sets

of results were not expected to differ to any great extent.
4.3. Results

Having reduced the potential energy to two degrees of

freedom, the energy function at any particular load level can be

visualized as a two-dimensional surface V(Q1,Q2). The

stationary values—maxima, minima and saddle points—of

this surface then correspond to states of equilibrium. In the

regime of overall negative stiffness, where the load is dropping

as the end-shortening increases and hence the layers are

softening, the solutions will be unstable (Timoshenko and

Gere, 1961). Hence the least energy solution is the minimum of

a local maximum or a saddle point. Although it is possible for a

system to get stuck in a local minimum, in the following it shall

be assumed that equilibrium states with the lowest energy will

provide the preferred modeshapes.
Taking the parameter values cmqtZ1, EIZ1/2, kZ1 and

CZ1, the equilibrium solutions can be found either by varying

P or by varying the end-shortening D. In Fig. 10 we present the
results of a series of such calculations, taking an initially large

load P and successively reducing it in value. This shows an

interesting transition in the preferred modeshape. For P greater

than a value of Pz6.5 the preferred modeshape is a localized

solution with effectively just one hump, whereas for P less than

this value a second hump starts to develop. Localized solutions

are found to be preferred at high load levels, much like the

single spline solution, with a transition taking place to the

periodic solutions as the load level falls. This therefore

successfully models an early stage of the experimental

sequence seen in Fig. 1.

We can understand the nature of this transition by studying

the way that the contour surfaces of V change as P (or D) is
altered. For PO6.5 the contour surface has four saddle points

and two maxima, corresponding to co-existing periodic and

localized solutions, of which the localized solutions have the

lowest energy. At Pz6.5 these maxima and saddle points start

to coalesce, so that for P!6.1 only two saddle points remain,

corresponding now to the existence of low energy periodic

solutions. Thus in a ‘least energy’ sense serial buckling is a

more likely phenomenon than a spontaneous wavetrain. If

having two synchronous humps was the preferred solution,

then the periodic solutions found at the maxima would have the

lowest energy. This process is examined further in Fig. 11,

which compares the energy levels in the two possible

equilibrium states. The comparative energy levels show that

where the two curves differ, the localized solution is clearly

preferred. However, the stiffness of the localized solution,

although negative, has a slightly higher numerical value than

that of the periodic. This contrasts with other structural

situations, where a lower post-buckling stiffness often indicates

the preferred solution (Hunt, 1989).

Looking more closely at the structure of contour plots,

Fig. 12 shows the energy contours for a high load level, PZ8.

This shows both saddle points and maxima, all of which are

stationary solutions. It can be observed that at this constant

load, all non-trivial equilibrium states have the same value of

end-shortening, DZ0.098, illustrated by the thick elliptical

line. Apart from the apparent minimum of energy in the flat

stateQ1ZQ2Z0, which lies within the jammed region of Fig. 4

and hence is of no practical significance, there are two

equilibrium states of immediate interest. We have first the

maximum of energy Vz0.444 lying in two positions on the

Q1ZKQ2 line at Q1zG0.4, representing the primitive

periodic solution. Second, there is the saddle-point at

Vz0.3915 occurring in four positions at Q1zG0.6 with Q2

very small, and again withQ2zG0.6 andQ1 very small. These
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are the primitive homoclinic solutions. Interestingly, as both

the maxima and the saddle points appear on the same end-

shortening contour, at this value of D the release of strain

energy suggested by the different energy levels takes place

without any change in load.

Fig. 13 shows the energy contours for PZ6.1265 and an

end-shortening contour for DZ0.25. This has the same

topological features as Fig. 12, except that two saddle points

have converged on each maximum to the point where all three

are about to become a single saddle on theQ1ZKQ2 line. Note

that the three states now take slightly different values of D at

this load level, indicating that an instability would be

accompanied by a drop in load. The conjunction of the three

states of equilibrium is seen to take place at just about the same

load level as the single-spline model for CZ1 starts to

restabilize (see Fig. 8). At this stage in the loading sequence,

the system is starting to find it easier to take the periodic rather

than the localized shape.

At around PZ4.6, we find the minimum possible load, or

nadir, of the equilibrium path. Here the single remaining saddle

point converges with the minimum of V that represents the far-

field restabilized periodic buckled state which appears outside

of the illustrated range of Figs. 12 and 13 (see Fig. 15 in the

next section for a clearer view of the transition between the

load levels). The eventual restabilization for the periodic state

thus takes place very much like that of Fig. 8 for the single

spline, only at lower load levels.

The sequence described in the contour plots, taking place

under falling load but increasing applied end-shortening,

involves the preferred modeshape changing from localized to

periodic as seen experimentally. This is further illustrated in

the plots of Fig. 10, which shows this smoothly varying
sequence over almost the complete range of loads from PZ8,

shown in the contour plot of Fig. 12, to the minimum load at

Pz4.6. The sequence could clearly be extended to further

humps of buckling with the inclusion of extra splines.
4.4. Primitive periodic solution (Q2ZKQ1)

The primitive two-spline periodic solution, given by

Q2ZKQ1, has been seen on the contour plots of Figs. 12

and 13. We next explore these particular solutions in more

depth, starting with a description of the selection process for

the value of U used in the plots. Fig. 14 show contours of Q1

againstU for this solution, at the highest load level used earlier.
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At higher loads, a single saddle point in V, specifically a

minimum with respect to U and a maximum with respect to

Q1(KQ2), is clearly visible. At the minimum possible post-

buckling load Pz4.6, this saddle point combines with the

minimum energy state from the restabilized path and vanishes.

Fig. 15 plots the energy variation with respect to Q1 across the

saddle point, at the three load levels. This illustrates again the
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transition from an energy shape with both a maximum and

minimum, to one where there is no stationary point or

equilibrium state.

The position of the saddle points can be determined

numerically by transforming them into minima as follows.

We start by reducing energy function V(Q1,U) to just two

degrees of freedom, by setting Q2ZKQ1 and the load to be
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constant. If we then define the function:

F Z
vV

vQ1

� �2

C
vV

vU

� �2

(11)

it becomes a relatively simple exercise to demonstrate that

saddles in V convert to minima in F (Hunt et al., 2004), a

schematic of which is shown in Fig. 16.

Using the MATLAB command fminsearch, which performs

unconstrained nonlinear optimization (The Math Works,

2001), with an educated initial guess for the values of Q1 and

U at PZ8 from Fig. 14, we can converge to the correct values

at the saddle point. These can then be used for the initial guess

at the next load level.

Fig. 17 shows variations of amplitude, overlap and end-

shortening for the Q2ZKQ1 solution, over the post-buckling

regime where the load falls while the end-shortening increases.

Note that qualitatively the first of these is again similar to the

periodic analysis given by Budd et al. (2003).

4.5. Primitive localized solution (Q2sKQ1)

With U found at each load level, using Fig. 12, initial

estimates for the values of Q1 and Q2 at the saddle points when

PZ8 can be made. To locate the saddle points of V, the same

method used in the previous subsection to search Q1K U space

is adopted, with the role of U replaced by Q2.

Fig. 18 shows variations of the spline amplitudes Q1 and Q2,

and the maximum and minimum displacements along the

length (combinations of Q1 and Q2) over the same post-

buckling load range as Fig. 17. Both plots show a fall in the

greater of the two values accompanied by an increase in the
smaller value, as the preferred equilibrium state changes from

localized to periodic, i.e. the initial fold decreases as the second

fold grows. This process is examined further in Fig. 19, which

compares the end-shortening values in the two possible

equilibrium states. At Pz6.4, part of the falling saddle-point

curve apparently turns back on itself, which corresponds to the

drop in the value of Q1. Such behaviour would not normally be

obtainable experimentally, even under conditions of controlled

end-shortening. The actual response would be marked by a

sudden downwards drop in load, at the constant value of D (and

hence Q1) marked by the point of vertical tangency of the load/

end-shortening curve. This same phenomenon is familiar from



Fig. 16. Schematic representation of transformation from V(Q1,U) to FU.
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a number of related structural problems and has been termed

snap-back behaviour. It is often, even in paper samples,

marked by an audible bang (Wadee et al., 2004) as significant

strain energy is released.
5. Concluding remarks

The model of Budd et al. (2003) for the non-linear buckling

of a confined two-layer system with episodical bedding plane

slip, by virtue of its use of periodic boundary conditions, in the

geological context is applicable only to synchronous folding.
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By introducing the less restrictive cubic B-splines into the

potential energy formulation, we have developed a rigorous

analysis of two-stage serial folding and we can thus mimic the

behaviour that has been established as a common phenomenon

in the parallel folding of rocks. As a direct consequence, we see

that non-synchronous folding is the preferred solution when

compared with spontaneous buckling.

In addition to providing the first theoretical treatment of

serial folding, the theory presented in this paper also predicts

that slip between the layers during folding will occur in a series

of slip events rather than at a uniform rate. This stick-slip

process has long been recognised in nature and characterises

the movement along faults and along bedding planes during

flexural slip folding, in the upper parts of the crust. These

episodes of slip are sometimes recorded as multiple layers of

crystal fibres (commonly calcite or quartz) that accumulate

along the bedding planes.

In considering the rheology of rocks during folding as

elastic and using energy considerations, it has been shown that

the finite amplification of individual humps is inherent in the

formulation. This justifies the validity of the model over earlier

viscous models, which were based on the synchronous

formation of folds in a wave-train.

The use of elastic buckling theories to account for

geological folding does, however, require some justification.

Geological folding results in the permanent deformation of the

rock layers and it follows that the layers have behaved in a non-

elastic manner. However, it is argued that this does not
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hortening, D, with load, P, for the Q2ZKQ1 solution.
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invalidate the use of elastic theories to describe geological

folding. We suggest that folding, particularly in the upper crust,

could be initiated by elastic buckling and only subsequently, as

the fold amplifies beyond the elastic limit, may other

rheological properties dominate the deformation.

The fact that the load continues to fall as the buckling

changes from a single localized hump to the two-hump

‘periodic’ fold apparently contrasts with earlier work detailing

similar behaviour. Usually it would be expected that the

propagation of the stress to form additional humps in a

progression would be marked by the load periodically falling

and rising (Hunt et al., 2000; Budd et al., 2001; Wadee et al.,

2004). It yet remains to be seen, however, whether this loading

pattern would persist if more than two contributing cells were

included.

The present formulation is, of course, limited and there are

two clear ways in which it might be developed further. First, a

recent contribution has extended it to a multilayer model

comprising N layers and compared the results with experiments

(Edmunds et al., in press). Second, having two sequential folds

is clearly inadequate for the modelling of an entire serial

folding sequence. Whilst adding extra cubic B-splines to the

problem will rapidly increase the computational complexity, it
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Fig. 19. Comparative variations of end-shortening, D, with P for both the

Q2ZKQ1 and theQ2sKQ1, noting the coalescence of these curves at Pz6.1.
could be of interest to adapt the splines formulation to uncover

the process of development of the nth fold, after assuming that

nK1 have already formed. This should be possible with just a

slight modification of boundary conditions at one end of one of

the splines.
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